Viral deep-sequencing data play a crucial role toward understanding disease transmission network flows, because the higher resolution of these data compared to standard Sanger sequencing provide evidence into the direction of infectious disease transmission. To more fully utilize these rich data and account for the uncertainties in phylogenetic analysis outcomes, we propose a spatial Poisson process model to uncover HIV transmission flow patterns at the population level. We represent pairings of two individuals with viral sequence data as typed points, with coordinates representing covariates such as gender and age, and the point type representing the unobserved transmission statuses (linkage and direction). Points are associated with observed scores on the strength of evidence for each transmission status that are obtained through standard deep-sequenece phylogenetic analysis. Our method is able to jointly infer the latent transmission statuses for all pairings and the transmission flow surface on the source-recipient covariate space. In contrast to existing methods, our framework does not require pre-classification of the transmission statuses of data points, instead learning them probabilistically through a fully Bayesian inference scheme. By directly modeling continuous spatial processes with smooth densities, our method enjoys significant computational advantages compared to previous methods that rely on discretization of the covariate space. We demonstrate that our framework can capture age structures in HIV transmission at high resolution, and bring valuable insights in a case study on viral deep-sequencing data from Southern Uganda.


翻译:与标准Sanger测序相比,这些数据的更高分辨率为传染性疾病传播方向提供了证据。为了更充分地利用这些丰富的数据,并解释植物遗传分析结果的不确定性,我们提议了一个空间Poisson进程模型,以发现人口一级的艾滋病毒传播流模式。我们代表两个个人与病毒序列数据相配的打字点,其坐标代表的是诸如性别和年龄等共变式数据,以及代表未观测的传播状态(链接和方向)的点类型。点与通过标准的深序列血压分析获得的每一种传播状态的证据强度的观测得分有关。我们的方法能够共同推导出所有配对的潜在传播状态和源源源源-源端采集变异空间的传输流表面。与现有方法不同,我们的框架不需要预先分解数据传输状态,而不需要通过完全Bayes推断状态(链接和方向),而是与观察到的证据强度得分相关。我们的方法可以直接地模拟我们以往的甚深层数据传输结构的精确度,从而展示了我们以往的甚高分辨率分析方法。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2022年7月29日
Arxiv
18+阅读 · 2021年6月10日
Arxiv
19+阅读 · 2019年11月23日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员