Many optimization problems in science and engineering are highly nonlinear, and thus require sophisticated optimization techniques to solve. Traditional techniques such as gradient-based algorithms are mostly local search methods, and often struggle to cope with such challenging optimization problems. Recent trends tend to use nature-inspired optimization algorithms. This work extends the standard cuckoo search (CS) by using the successful features of the cuckoo-host co-evolution with multiple interacting species, and the proposed multi-species cuckoo search (MSCS) intends to mimic the multiple species of cuckoos that compete for the survival of the fittest, and they co-evolve with host species with solution vectors being encoded as position vectors. The proposed algorithm is then validated by 15 benchmark functions as well as five nonlinear, multimodal design case studies in practical applications. Simulation results suggest that the proposed algorithm can be effective for finding optimal solutions and in this case all optimal solutions are achievable. The results for the test benchmarks are also compared with those obtained by other methods such as the standard cuckoo search and genetic algorithm, which demonstrated the efficiency of the present algorithm. Based on numerical experiments and case studies, we can conclude that the proposed algorithm can be more efficient in most cases, leading a potentially very effective tool for solving nonlinear optimization problems.


翻译:科学和工程方面的许多优化问题都是高度非线性的问题,因此需要复杂的优化技术才能解决。传统技术,如梯度算法,主要是本地的搜索方法,而且往往难以应对这种具有挑战性的优化问题。最近的趋势倾向于使用自然激励的优化算法。这项工作利用库库-宿主与多种互动物种共同演进的成功特点,扩展了标准的布库搜索(CS),而拟议的多物种库库搜索(MSCS)也打算模仿多种种类的布库动物,这些动物为适量者的生存而竞争,它们与宿主物种共同演化,其溶液矢量被编码成位置矢量。随后,拟议的算法得到15个基准功能以及5个非线性、多式设计案例研究在实际应用方面的验证。模拟结果表明,拟议的算法能够有效地找到最佳解决办法,在此情况下,所有最佳解决办法都是可以实现的。测试基准也与标准库搜索和遗传算法等其他方法取得的结果相比较,它们与宿主种共同演算法共同演算,这些方法可以证明目前最有效的算法的效率。我们可以通过一个潜在的数字和最高效的模型来解决最高效的模型。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
106+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员