Machine Learning is transitioning from an art and science into a technology available to every developer. In the near future, every application on every platform will incorporate trained models to encode data-based decisions that would be impossible for developers to author. This presents a significant engineering challenge, since currently data science and modeling are largely decoupled from standard software development processes. This separation makes incorporating machine learning capabilities inside applications unnecessarily costly and difficult, and furthermore discourage developers from embracing ML in first place. In this paper we present ML .NET, a framework developed at Microsoft over the last decade in response to the challenge of making it easy to ship machine learning models in large software applications. We present its architecture, and illuminate the application demands that shaped it. Specifically, we introduce DataView, the core data abstraction of ML .NET which allows it to capture full predictive pipelines efficiently and consistently across training and inference lifecycles. We close the paper with a surprisingly favorable performance study of ML .NET compared to more recent entrants, and a discussion of some lessons learned.


翻译:机器学习正在从艺术和科学向每个开发者可用的技术过渡。 在不远的将来,每个平台上的每一项应用都将纳入经过训练的模型,以将开发者无法接受的基于数据的决定编码起来。这提出了重大的工程挑战,因为目前的数据科学和模型模型在很大程度上与标准的软件开发过程脱钩。这种分离使得将机器学习能力纳入应用中不必要地花费和困难,进一步阻止开发者首先接受ML。在本文中,我们介绍了微软在过去十年里开发的一个框架ML.NET,这个框架是为了应对在大型软件应用中方便运输机器学习模型的挑战。我们展示了它的架构,并说明了形成它的应用要求。具体地说,我们引入了DataView,即ML.NET的核心数据抽象,使其能够在培训和推断生命周期中高效和连贯地捕捉到完全预测性管道。我们关闭了这份文件,对ML.NET进行了令人惊讶的优异的绩效研究,与最近加入者相比,并讨论了一些经验教训。

2
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
专知会员服务
112+阅读 · 2019年12月24日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【CMU】机器学习导论课程(Introduction to Machine Learning)
专知会员服务
58+阅读 · 2019年8月26日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
43+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
53+阅读 · 2018年12月11日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
43+阅读 · 2019年12月20日
Arxiv
22+阅读 · 2019年11月24日
A Comprehensive Survey on Transfer Learning
Arxiv
117+阅读 · 2019年11月7日
Arxiv
18+阅读 · 2019年1月16日
Arxiv
53+阅读 · 2018年12月11日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
Arxiv
15+阅读 · 2018年6月23日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
7+阅读 · 2018年5月23日
Top
微信扫码咨询专知VIP会员