Stochastic gradient-based optimization methods, such as L-SVRG and its accelerated variant L-Katyusha [12], are widely used to train machine learning models. Theoretical and empirical performance of L-SVRG and L-Katyusha can be improved by sampling the observations from a non-uniform distribution [17]. However, to design a desired sampling distribution, Qian et al.[17] rely on prior knowledge of smoothness constants that can be computationally intractable to obtain in practice when the dimension of the model parameter is high. We propose an adaptive sampling strategy for L-SVRG and L-Katyusha that learns the sampling distribution with little computational overhead, while allowing it to change with iterates, and at the same time does not require any prior knowledge on the problem parameters. We prove convergence guarantees for L-SVRG and L-Katyusha for convex objectives when the sampling distribution changes with iterates. These results show that even without prior information, the proposed adaptive sampling strategy matches, and in some cases even surpasses, the performance of the sampling scheme in Qian et al.[17]. Extensive simulations support our theory and the practical utility of the proposed sampling scheme on real data.


翻译:L-SVRG及其加速变体L-Katyusha[12]等基于悬浮梯度的优化方法被广泛用于培训机器学习模型。L-SVRG和L-Katyusha的理论和经验表现可以通过对非统一分布[17]的观测进行抽样抽样来改进。然而,为了设计一个理想的抽样分布,Qian等人[17] 依赖事先对光滑常数的了解,这些常数在模型参数的高度时,在实际操作中可以计算难以掌握。我们建议L-SVRG和L-Katyusha采用适应性取样战略,在利用少量计算间接费用学习抽样分布,同时允许它与迭代方发生变化,同时不需要事先对问题参数有任何了解。我们证明L-SVRG和L-Katyusha在取样分布变化时,会为连接目标提供一致保证。这些结果显示,即使没有事先信息,拟议的适应性取样战略也比甚至超过在实际效用模型中支持我们所拟议的Qian etly数据模拟计划的业绩。[17]。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
On Feature Normalization and Data Augmentation
Arxiv
14+阅读 · 2020年2月25日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员