Prior studies have shown that, training machine learning models via empirical loss minimization to maximize a utility metric (e.g., accuracy), might yield models that make discriminatory predictions. To alleviate this issue, we develop a new training algorithm, named BiFair, which jointly minimizes for a utility, and a fairness loss of interest. Crucially, we do so without directly modifying the training objective, e.g., by adding regularization terms. Rather, we learn a set of weights on the training dataset, such that, training on the weighted dataset ensures both good utility, and fairness. The dataset weights are learned in concurrence to the model training, which is done by solving a bilevel optimization problem using a held-out validation dataset. Overall, this approach yields models with better fairness-utility trade-offs. Particularly, we compare our algorithm with three other state-of-the-art fair training algorithms over three real-world datasets, and demonstrate that, BiFair consistently performs better, i.e., we reach to better values of a given fairness metric under same, or higher accuracy. Further, our algorithm is scalable. It is applicable both to simple models, such as logistic regression, as well as more complex models, such as deep neural networks, as evidenced by our experimental analysis.


翻译:先前的研究显示,通过实验损失最小化来培训机器学习模型,以最大限度地提高通用指标(如准确性),可能会产生具有歧视性预测的模型。为了缓解这一问题,我们开发了名为Bifair的新培训算法,它共同最大限度地减少一种效用和公平利益损失。最重要的是,我们这样做并没有直接修改培训目标,例如增加正规化条件。相反,我们学习了一套培训数据集的权重,例如,关于加权数据集的培训既确保良好的效用,也确保公平。数据集的权重与模型培训一致,这是通过使用一个搁置的验证数据集解决双级优化问题来完成的。总的来说,这种方法产生一种更公平的效用交易的更好的模型。特别是,我们将我们的算法与其他三种最先进的公平培训算法比三个真实世界数据集进行比较,并表明,Bifair不断进行更好的表现,也就是说,我们在同一个或更高的精确度下,我们达到一个更好的价值。此外,我们的算法方法通过更简单、更精确的回归模型来证明,我们更精确的精确的精确的系统模型是更精确的、更精确的系统模型。

0
下载
关闭预览

相关内容

【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
商业数据分析,39页ppt
专知会员服务
157+阅读 · 2020年6月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月2日
Arxiv
7+阅读 · 2021年4月30日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员