This paper proposes a method for wireless network optimization applicable to tuning cell parameters that impact the performance of the adjusted cell and the surrounding neighboring cells. The method relies on multiple reinforcement learning agents that share a common policy and include information from neighboring cells in the state and reward. In order not to impair network performance during the first steps of learning, agents are pre-trained during an earlier phase of offline learning, in which an initial policy is obtained using feedback from a static network simulator and considering a wide variety of scenarios. Finally, agents can wisely tune the cell parameters of a test network by suggesting small incremental changes to slowly steer the network toward an optimal configuration. Agents propose optimal changes using the experience gained with the simulator in the pre-training phase, but also continue to learn from current network readings after each change. The results show how the proposed approach significantly improves the performance gains already provided by expert system-based methods when applied to remote antenna tilt optimization. Additional gains are also seen when comparing the proposed approach with a similar method in which the state and reward do not include information from neighboring cells.


翻译:本文建议了一种适用于调整单元格参数的无线网络优化方法,该方法将影响经调整的单元格和周围相邻单元格的性能。该方法依赖于多个强化学习剂,它们共享共同政策,包括来自州内邻近细胞的信息和奖赏。为了在学习的最初阶段不破坏网络的性能,代理商在离线学习的早期阶段先接受过培训,其中利用静态网络模拟器的反馈获得初始政策,并考虑多种设想。最后,代理商可以明智地调整测试网络的细胞参数,建议小的渐进变化,以缓慢引导网络向最佳配置方向发展。代理商建议采用在培训前阶段与模拟器取得的经验进行最佳变革,但还在每次变化后继续从当前的网络读取经验。结果显示,拟议的方法如何在应用远程天线倾斜优化时大大改进以专家系统为基础的方法已经提供的性能收益。在将拟议方法与类似方法进行比较时还看到额外收益,即状态和奖励办法不包括来自邻近细胞的信息。</s>

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
59+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2022年11月8日
Arxiv
64+阅读 · 2022年4月13日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员