We call a non-discrete Euclidean building a Bruhat-Tits space if its automorphism group contains a subgroup that induces the subgroup generated by all the root groups of a root datum of the building at infinity. This is the class of non-discrete Euclidean buildings introduced and studied by Bruhat and Tits. We give the complete classification of Bruhat-Tits spaces whose building at infinity is the fixed point set of a polarity of an ambient building of type B_2, F_4 or G_2 associated with a Ree or Suzuki group endowed with the usual root datum. (In the B_2 and G_2 cases, this fixed point set is a building of rank one; in the F_4 case, it is a generalized octagon whose Weyl group is not crystallographic.) We also show that each of these Bruhat-Tits spaces has a natural embedding in the unique Bruhat-Tits space whose building at infinity is the corresponding ambient building.


翻译:我们称之为非分解的 Euclidean 建筑空间。 如果其自动形态组包含一个分组, 引导由无穷建筑根数据库的所有根组产生的分组。 这是由Bruhat 和 Tits 介绍和研究的非分解 Euclidean 建筑的类别。 我们给布鲁哈特- Tits 空间的完整分类, 其无穷的建筑是B_ 2、 F_ 4 或 G_ 2号环境建筑的两极分集, 与具有普通根数据库的Ree 或 Suzuki 组合有关。 ( 在 B_ 2 和 G_ 2 案例中, 这个固定点是一级建筑; 在 F_ 4 案例中, 这是一个通用的八边形, 其Wyl 组不是水晶学。 我们还显示, 这些布鲁哈特- Tits 空间的每个空间在独特的布鲁哈特- Tits 空间中都有自然嵌入。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关VIP内容
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
16+阅读 · 2020年4月28日
因果图,Causal Graphs,52页ppt
专知会员服务
250+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员