We present \textsc{Vx2Text}, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+$x$ to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.


翻译:我们提出了由多式投入(例如,视频或音频)组成的文本生成框架 。 为了利用变压器网络, 这些变压器网络在建模语言上已经证明是有效的, 我们首先将每种模式转换成一组语言嵌入器。 这样我们的方法就可以在语言空间中进行多式融合, 从而消除了对跨模式融合模块的需求。 为了解决对连续投入( 如, 视频或音频)无区别的象征性化, 我们使用了一种允许端到端培训的放松方案。 此外, 与以前的只使用编码器的模型不同, 我们的网络包括一个自动递增的解译器, 以生成由语言编码器组合起来的多式嵌入器的开放文本。 这使我们的方法完全具有轮廓性, 并直接适用于不同的“ 视频+x美元到文本” 问题, 而不需要为每项任务设计专门的网络头目。 拟议的框架不仅概念简单,而且非常有效: 实验显示我们的方法基于单一结构的图像- 版本版本- 问题。

0
下载
关闭预览

相关内容

【EMNLP2020】自然语言生成,Neural Language Generation
专知会员服务
38+阅读 · 2020年11月20日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
68+阅读 · 2020年10月24日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
已删除
将门创投
4+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2019年12月2日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
Top
微信扫码咨询专知VIP会员