Zero-knowledge and multi-prover systems are both central notions in classical and quantum complexity theory. There is, however, little research in quantum multi-prover zero-knowledge systems. This paper studies complexity-theoretical aspects of the quantum multi-prover zero-knowledge systems. This paper has two results: 1.QMIP* systems with honest zero-knowledge can be converted into general zero-knowledge systems without any assumptions. 2.QMIP* has computational quantum zero-knowledge systems if a natural computational conjecture holds. One of the main tools is a test (called the GHZ test) that uses GHZ states shared by the provers, which prevents the verifier's attack in the above two results. Another main tool is what we call the Local Hamiltonian based Interactive protocol (LHI protocol). The LHI protocol makes previous research for Local Hamiltonians applicable to check the history state of interactive proofs, and we then apply Broadbent et al.'s zero-knowledge protocol for QMA \cite{BJSW} to quantum multi-prover systems in order to obtain the second result.


翻译:经典和量子复杂理论中,零知识和多源系统都是核心概念。 然而,在量子多源零知识系统中,几乎没有什么研究。 本文研究量子多源零知识系统的复杂性理论方面。 本文有两个结果: 1. QMIP* 系统, 具有诚实的零知识, 可以不经任何假设而转换为普通的零知识系统。 2. QMIP* 如果自然计算假设存在, 则拥有计算量零知识系统。 其中一项主要工具是测试( 称为 GHZ 测试), 使用验证人共享的GHZ 状态, 防止验证人在上述两个结果中发动攻击。 另一个主要工具是我们称之为以本地汉密尔顿为基础的互动协议( LHI 协议) 。 LHIP 协议将适用于本地汉密尔顿人用于检查交互证据历史状态的先前研究, 然后我们对量子多源系统应用Broadbent 等的零知识协议, 以获取第二个结果。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
91+阅读 · 2020年2月28日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员