Cross-Domain Recommendation (CDR) and Cross-System Recommendation (CSR) have been proposed to improve the recommendation accuracy in a target dataset (domain/system) with the help of a source one with relatively richer information. However, most existing CDR and CSR approaches are single-target, namely, there is a single target dataset, which can only help the target dataset and thus cannot benefit the source dataset. In this paper, we focus on three new scenarios, i.e., Dual-Target CDR (DTCDR), Multi-Target CDR (MTCDR), and CDR+CSR, and aim to improve the recommendation accuracy in all datasets simultaneously for all scenarios. To do this, we propose a unified framework, called GA (based on Graph embedding and Attention techniques), for all three scenarios. In GA, we first construct separate heterogeneous graphs to generate more representative user and item embeddings. Then, we propose an element-wise attention mechanism to effectively combine the embeddings of common entities (users/items) learned from different datasets. Moreover, to avoid negative transfer, we further propose a Personalized training strategy to minimize the embedding difference of common entities between a richer dataset and a sparser dataset, deriving three new models, i.e., GA-DTCDR-P, GA-MTCDR-P, and GA-CDR+CSR-P, for the three scenarios respectively. Extensive experiments conducted on four real-world datasets demonstrate that our proposed GA models significantly outperform the state-of-the-art approaches.


翻译:跨部门建议(CDR)和跨系统建议(CSR)是为了提高目标数据集(域/系统)中的建议准确性,在信息相对丰富的来源的帮助下,提出了目标数据集(域/系统)的建议准确性,然而,大多数现有的CDR和CSR方法都是单一目标,即有一个单一的目标数据集,只能帮助目标数据集,因此无法使源数据集受益。在本文件中,我们侧重于三个新的假设,即双重目标数据集(DTCDR)、多目标数据集(MTCDR)和CDR+CSR(CDR),目的是同时提高所有假设情况下所有数据集(域/系统)中的建议准确性。为此,我们提出了一个统一的框架,称为GA(基于图表嵌入和关注技术),用于所有三种假设情景,即,我们首先建立单独的组合图解图图,以产生更具代表性的用户和项目嵌入。然后,我们提出一个元素式关注机制,以有效整合从不同数据集中学习的通用实体(用户/项目)的嵌入点,多指标(GDR-M-C),并分别显示已进行的三个模型,避免进行负面的三种模式之间的数据转换。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
14+阅读 · 2020年12月10日
Arxiv
5+阅读 · 2019年10月11日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员