In spite of the enormous success of neural networks, adversarial examples remain a relatively weakly understood feature of deep learning systems. There is a considerable effort in both building more powerful adversarial attacks and designing methods to counter the effects of adversarial examples. We propose a method to transform the adversarial input data through a mixture of generators in order to recover the correct class obfuscated by the adversarial attack. A canonical set of images is used to generate adversarial examples through potentially multiple attacks. Such transformed images are processed by a set of generators, which are trained adversarially as a whole to compete in inverting the initial transformations. To our knowledge, this is the first use of a mixture-based adversarially trained system as a defense mechanism. We show that it is possible to train such a system without supervision, simultaneously on multiple adversarial attacks. Our system is able to recover class information for previously-unseen examples with neither attack nor data labels on the MNIST dataset. The results demonstrate that this multi-attack approach is competitive with adversarial defenses tested in single-attack settings.


翻译:尽管神经网络取得了巨大成功,但对抗性实例仍然是深层次学习系统的相对不易理解的特征。在建立更强大的对抗性攻击和设计对抗性例子影响的方法方面,都作出了相当大的努力。我们提出一种方法,通过混合发电机转换对抗性输入数据,以恢复因对抗性攻击而出现的正确的等级混淆。一套典型图像被用来通过潜在的多重攻击产生对抗性例子。这些变形图像是由一组发电机处理的,这些发电机经过对抗性培训,整体上可进行对抗性竞争,以扭转最初的转变。据我们所知,这是首次使用基于混合对抗性训练的防御性系统作为防御机制。我们表明,在没有监督的情况下培训这种系统是可能的,同时进行多重对抗性攻击性攻击。我们的系统能够从以往所见的既无攻击又无数据标签的例子中恢复类信息。结果表明,这种多攻击方法与在单一攻击环境下测试的对抗性防御具有竞争力。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年10月31日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
67+阅读 · 2020年10月24日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月30日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
10+阅读 · 2018年3月23日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员