We investigate a classification problem using multiple mobile agents capable of collecting (partial) pose-dependent observations of an unknown environment. The objective is to classify an image over a finite time horizon. We propose a network architecture on how agents should form a local belief, take local actions, and extract relevant features from their raw partial observations. Agents are allowed to exchange information with their neighboring agents to update their own beliefs. It is shown how reinforcement learning techniques can be utilized to achieve decentralized implementation of the classification problem by running a decentralized consensus protocol. Our experimental results on the MNIST handwritten digit dataset demonstrates the effectiveness of our proposed framework.
翻译:我们使用能够收集(部分)对未知环境进行依赖性观测的多移动代理物来调查分类问题,目的是在有限的时间范围内对图像进行分类,我们建议一个网络结构,说明代理物如何形成当地信仰,采取当地行动,并从原始部分观察中提取相关特征。允许代理物与其邻国代理物交流信息,以更新自己的信仰。通过执行分散化的共识协议,可以展示如何利用强化学习技术实现分类问题的分散实施。我们在MNIST手写数字数据集上的实验结果显示了我们拟议框架的有效性。