Probabilistic graphical models are powerful tools which allow us to formalise our knowledge about the world and reason about its inherent uncertainty. There exist a considerable number of methods for performing inference in probabilistic graphical models; however, they can be computationally costly due to significant time burden and/or storage requirements; or they lack theoretical guarantees of convergence and accuracy when applied to large scale graphical models. To this end, we propose the Universal Marginaliser Importance Sampler (UM-IS) -- a hybrid inference scheme that combines the flexibility of a deep neural network trained on samples from the model and inherits the asymptotic guarantees of importance sampling. We show how combining samples drawn from the graphical model with an appropriate masking function allows us to train a single neural network to approximate any of the corresponding conditional marginal distributions, and thus amortise the cost of inference. We also show that the graph embeddings can be applied for tasks such as: clustering, classification and interpretation of relationships between the nodes. Finally, we benchmark the method on a large graph (>1000 nodes), showing that UM-IS outperforms sampling-based methods by a large margin while being computationally efficient.

1
下载
关闭预览

相关内容

图模型由点和线组成的用以描述系统的图形。图模型属于结构模型(见模型),可用于描述自然界和人类社会中的大量事物和事物之间的关系。在建模中采用图模型可利用图论作为工具。按图的性质进行分析为研究各种系统特别是复杂系统提供了一种有效的方法。构成图模型的图形不同于一般的几何图形。例如,它的每条边可以被赋以权,组成加权图。权可取一定数值,用以表示距离、流量、费用等。加权图可用于研究电网络、运输网络、通信网络以及运筹学中的一些重要课题。图模型广泛应用于自然科学、工程技术、社会经济和管理等方面。见动态结构图、信号流程图、计划协调技术、图解协调技术、风险协调技术、网络技术、网络理论。

Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.

0
1
下载
预览
Top