In this paper, we propose a method for block sparse signal recovery that minimizes the block $q$-ratio sparsity $\left(\lVert z\rVert_{2,1}/\lVert z\rVert_{2,q}\right)^{\frac{q}{q-1}}$ with $q\in[0,\infty]$. For the case of $1<q\leq\infty$, we present the theoretical analyses and the computing algorithms for both cases of the $\ell_2$-bounded and $\ell_{2,\infty}$-bounded noises. The corresponding unconstrained model is also investigated. Its superior performance in block sparse signal reconstruction is demonstrated by numerical experiments.
翻译:在本文中,我们提出了一个块状稀有信号回收方法, 最大限度地减少块状美元- ratios sparsity$left (\ lVert z\rVert ⁇ 2,1}/\\ lVert z\rVert ⁇ 2,q ⁇ right)\\frac{q ⁇ qq-1 ⁇ $$q\in[0,\infty] 。 对于 $ < q\leq\ infty$ 的情况, 我们提出理论分析 和计算算法, 包括 $\ ell_ 2$-bounded 和$\ ell\\\\\\2,\infty} $bounded ambounds。 相应的未受限制模式也得到了调查。 其在块状稀有信号重建中的优异性表现表现在数字实验中 。